
1

High Performance Networking

M. Tim Jones
Emulex Corp.

-- Increasing performance in GB applications

2

Agenda

! Networking Architecture
! Sockets Programming Introduction

– API, Clients, Servers, Symmetry
! Where’s the Problem?
! Enhancing Performance

– Application Layer Enhancements
– TCP/IP Stack Selection
– TCP/IP Stack Configuration
– TCP/IP Stack Modifications
– Specialized Hardware
– Other Methods

! ~Q&A

3

Networking Architecture

! Application Layer
– Networking App

! Sockets Layer
– Developer’s Interface

! Transport Layer
– TCP, UDP, SCTP, …

! Network Layer
– IPv4/IPv6, IPSec

4

Sockets Programming

! Simple API provides
primitives for client and
server implementation

! Provides multi-protocol
support
(TCP/UDP/SCTP/…)

! Provides application-layer
configuration (behavioral,
performance, etc.)

5

TCP Sockets Symmetry

! Relationship
between calls in
application

! Relationship
between client
and server

! Performance
aspects

6

Enhancing Performance

Where’s the
Problem?

7

Where’s the problem?

! Data Movement
– Buffer Copies

! Data Manipulation (Touching the data)
– Validation, Checksums, Encryption, Decryption.

! Resource Management
– Locks, Cache, Connection contexts

! Protocol Overhead
– Fragmentation, Reassembly, Flow Control,

Congestion Control
– 1Hz for 1bps (Intel Rule)

8

Enhancing Performance

Application Layer
Enhancements

9

Application Layer Enhancements

! Nagle
! Bandwidth Delay Product
! Read/Write calls
! Control and Data Connections
! Select API Function
! Network Striping (Multiple Connections)
! TCP vs. UDP

10

Nagle

! Minimize small packets (tinygrams) on the network by
coalescing data

– Enabled by default

! Disabling permits small packets to be generated
– Decreases latency (<200ms)

! Enabled via the TCP_NODELAY socket option

int option = 0;

ret = setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
(void *)&option, sizeof(option));

11

BDP

! Bandwidth Delay Product
– Product of round-trip time and estimated minimum

bandwidth between endpoints
! TCP Buffer sizes set accordingly

– Buffer size determines maximum amount of
unacknowledged data that can be sent (simplified)

! Example:
– 1ms RTT * 1Gb/s link speed = 125KB

12

BDP (cont)

! Adjusted through setsockopt:

! Must be done before connection
– Client before connect
– Server before accept (child socket inherits)

int bufsize= 65536;

ret = setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
(void *)&bufsize, sizeof(bufsize));

ret = setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
(void *)&bufsize, sizeof(bufsize));

13

BDP (cont)

! 64K windows not large enough for LFN or
High-Speed Networks.

! To support RFC1323, window scale option
provided (shift base socket buffer size)
– Supports up to 1GB window

14

Read/Write calls

! Write as much data / Read as much data as
possible per call
– Reduction in kernel context switches
– Minimize the number of buffer copies (write)
– Keeps advertised window open (read)

! If data is packet oriented (header + data),
peeking the header and then reading the total
size can sometimes be beneficial
– Can help in message framing

15

Control/Data

! Provide separate connections for control and
data
– Control connection used solely for

command/response
– Data connection used for bulk data transfer
– Characteristics of connections different

! Successful with File Transfer Protocol (FTP)
– Telnet-like connection for control
– Data connection for bulk data

16

Avoiding select

! select commonly induces poor performance
– Kernel mods
– Sam?

! Alternatives?
– Event Callbacks (if available)
– Stack modifications

17

Network Striping

! Open multiple connections and stripe data over
them
– Improves bandwidth utilization
– Reduces latency
– Operates on un-optimized sockets (small windows,

etc.)

! PSockets at University of Illinois

18

TCP vs. UDP

! To avoid computational complexity of TCP, use
raw UDP?

! Rarely beneficial (from my experience)
– TCP includes complexity for a reason
– Can work for very simple protocols (idempotent

packet transfer)
! Common broadcast / multicast

19

Enhancing Performance

TCP/IP
Stack Selection

20

TCP/IP Stack Selection

! RFC Compliance
– Standards…
– RFC1323
– RFC2001

! Zero-Copy APIs

! Event Registration /
Socket Callbacks

! Timer Implementation

! Resource Management

! Reconfigurability

! Commented-Source

! ANVL

21

Enhancing Performance

TCP/IP
Stack Configuration

22

TCP/IP Stack Configuration

! Compile-time reconfiguration
– Disable unnecessary functionality

! Tune resource availability
! Avoid memory heaps

– Resource queues as an alternative
! Scenario-Specific Configuration

– Direct-routes
! No PMTU Discovery
! No Routing Decisions

23

Jumbo Frames

! Goal: Largest link MTU not exceeding Path MTU

! Increased MTU means more payload per segment
– Typical 1500 MTU typically means 1448 MSS (payload)
– Typical jumbo frame is 9000 MTU

! Path MTU Discovery (RFC 1191)
– Used only for indirect routes

! MSS Negotiation (during three-way handshake)

24

Jumbo Frames (cont)

! What do jumbo frames mean to the stack?

! Less processing per packet

25

Enhancing Performance

TCP/IP
Stack Modifications

26

TCP/IP Stack Modifications

! Two types of modifications
– TCP Friendly

! Changes that interoperate with unmodified stacks

– Non-friendly
! Changes that require symmetric changes (ECN, etc.)

! We’ll focus here on some TCP-friendly
changes

27

TCP/IP Stack Modifications

! Delayed Ack Removal
! Minimizing Acks
! Slow-Start
! Scalable TCP (RFC-2581)

28

Scalable TCP

! Flow Control
– Receiver via advertised window
– Sender via congestion window

! Scalable TCP alters functions that manipulate the
congestion window (for large windows)

29

Scalable TCP (cont)

! Recovery at 10Gbps
– ~5 hours

! Recovery at 10Gbps
– 2.7 seconds

! http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

30

Enhancing Performance

Specialized Hardware

31

Specialized Hardware

! TCP Offload Engines (TOE)
– Partial Offload NIC
– Full Offload NIC
– Protocol Acceleration

! TOE Chips

! Encryption/Decryption Chips
– IPSec

32

Enhancing Performance

Other Methods

33

Other Methods

! Stream Control Transmission Protocol (SCTP)
– RFC-2960
– Associations
– Multi-homing
– Framing
– Unordered Delivery

! Real-Time Transport Protocol (RTP)
– RFC-1889
– UDP-based
– RTP Control Protocol (RTCP)
– QoS handled separately (using protocols such as RSVP)

34

Other Methods

! Remote DMA Protocol (RDMA) + DDP
– Eliminates copies between kernel and application
– Explicit buffer definition
– Good use of resources

– Can be used by TCP, SCTP, others

– Not yet a ratified IETF spec

35

Future

! Socket Instrumentation (network-aware applications)
– getsockopt()

! RTT
! Utilized Bandwidth

– Socket Buffer Tuning

! Automatic configuration (network-aware operating
systems)

– Tune individual socket performance
– Tune stack performance

! Number of connections, available resources, available BW

! Better tools (monitoring and analysis)

36

Enhancing Performance

! Final Questions

