High Performance Networking

-- Increasing performance in GB applications

M. Tim Jones
Emulex Corp.

e Networking Architecture
e Sockets Programming Introduction

- API, Clients, Servers, Symmetry

e Where’s the Problem?
e Enhancing Performance

— Application Layer Enhancements
- TCP/IP Stack Selection
- TCP/IP Stack Configuration
- TCP/IP Stack Modifications
- Specialized Hardware
Other Methods

~Q&A

Networking Architecture

e Application Layer
— Networking App

e Sockets Layer L
Sockets AP (BSD)
— Developer’s Interface “Tagatioe | ee UDP
Network Layer =]
e Transport Layer ———— —
- TCP, UDP, SCTP, ... | Physical Layer |

e Network Layer
- IPv4/IPv6, IPSec

Simple API provides
primitives for client and
server implementation

e Provides multi-protocol
support
(TCP/UDP/SCTP/...)

e Provides application-layer
configuration (behavioral,
performance, etc.)

Sockets Programming

§ 2
CER:
socket -]
bind o9
listen @)
accept @)
connect O
recv/recvirom C]
send/sendto C 0]
select 0]
getsockopt/setsockopt N
close/shutdown C]

Relationship
between calls in
application

e Relationship
between client
and server

e Performance
aspects

TCP Sockets Symmetry

(socket))
clent C bir:::i(])
Y Y
sockel)) (usten))
Y Connection Establishment Y)
connect())— _ = = = —b(accept() }:
~
[} Y N
read())4— _Data —Tmﬁ“— —(write())
A
Y Y
close())1— _—— — b(close())
|

Enhancing Performance

Where’'s the
Problem?

Where’s the problem?

e Data Movement
- Buffer Copies

e Data Manipulation (Touching the data)
- Validation, Checksums, Encryption, Decryption.

e Resource Management
- Locks, Cache, Connection contexts

e Protocol Overhead

- Fragmentation, Reassembly, Flow Control,
Congestion Control

— 1Hz for 1bps (Intel Rule)

Enhancing Performance

Application Layer
Enhancements

Application Layer Enhancements

e Nagle
e Bandwidth Delay Product

e Read/Write calls

e Control and Data Connections

e Select API Function

e Network Striping (Multiple Connections)
e TCP vs. UDP

e Minimize small packets (tinygrams) on the network by
coalescing data
- Enabled by default

e Disabling permits small packets to be generated
- Decreases latency (<200ms)

e Enabled viathe TCP_NODELAY socket option

I nt option = 0;

ret = setsockopt(sock, |PPROTO TCP, TCP_NODELAY,
(void *)&option, sizeof(option));

e Bandwidth Delay Product

— Product of round-trip time and estimated minimum
bandwidth between endpoints

e TCP Buffer sizes set accordingly

— Buffer size determines maximum amount of
unacknowledged data that can be sent (simplified)

e Example:
- 1ms RTT * 1Gb/s link speed = 125KB

BDP (cont)

e Adjusted through setsockopt:

I nt bufsize= 65536;

ret

ret

set sockopt (sock, SOL_ SOCKET,
(voi d *) &buf si ze,

set sockopt (sock, SOL_SOCKET,
(void *) &bufsi ze,

SO_RCVBUF,
si zeof (buf si ze)) ;

SO SNDBUF,
si zeof (buf si ze));

e Must be done before connection

— Client before connect

— Server before accept (child socket inherits)

BDP (cont)

e 64K windows not large enough for LFN or
High-Speed Networks.

e To support RFC1323, window scale option
provided (shift base socket buffer size)

— Supports up to 1GB window

Read/Write calls

e \Write as much data / Read as much data as
possible per call
- Reduction in kernel context switches
- Minimize the number of buffer copies (write)
- Keeps advertised window open (read)

e |f data Is packet oriented (header + data),
peeking the header and then reading the total
Size can sometimes be beneficial

— Can help in message framing

Control/Data

e Provide separate connections for control and
data

— Control connection used solely for
command/response

— Data connection used for bulk data transfer
— Characteristics of connections different

e Successful with File Transfer Protocol (FTP)
— Telnet-like connection for control
— Data connection for bulk data

Avoiding select

e select commonly induces poor performance
— Kernel mods
- Sam?

e Alternatives?
- Event Callbacks (if available)
— Stack modifications

Network Striping

e Open multiple connections and stripe data over
them
— Improves bandwidth utilization
- Reduces latency

— Operates on un-optimized sockets (small windows,
etc.)

e PSockets at University of lllinois

TCP vs. UDP

e To avoid computational complexity of TCP, use
raw UDP?

e Rarely beneficial (from my experience)
— TCP includes complexity for a reason

- Can work for very simple protocols (idempotent
packet transfer)
e Common broadcast / multicast

Enhancing Performance

TCP/IP
Stack Selection

TCP/IP Stack Selection

e RFC Compliance
- Standards...
- RFC1323
- RFC2001

e Timer Implementation

e Resource Management

e Zero-Copy APIs e Reconfigurability

e Event Registration / e Commented-Source

Socket Callbacks
e ANVL

Enhancing Performance

TCP/IP
Stack Configuration

TCP/IP Stack Configuration

e Compile-time reconfiguration
- Disable unnecessary functionality

e Tune resource availability

e Avoid memory heaps
- Resource gueues as an alternative

e Scenario-Specific Configuration

— Direct-routes
e No PMTU Discovery
e No Routing Decisions

Jumbo Frames

e Goal: Largest link MTU not exceeding Path MTU

e Increased MTU means more payload per segment
- Typical 1500 MTU typically means 1448 MSS (payload)
— Typical jJumbo frame is 9000 MTU

e Path MTU Discovery (RFC 1191)
- Used only for indirect routes

e MSS Negotiation (during three-way handshake)

Jumbo Frames (cont)

e \What do jumbo frames mean to the stack?

o | [[Pkt TR [T | Pt [ke
10 Mb/S 1500 1200uS 833 9000 T24605 138
100Mb/S 1500 120us 8333 9000 T20us 1388

1Gh/S 1500 12us 83333 9000 T2us 13888
10Gh/S 1500 1.2u8 833333 9000 7.2uS 138888

e Less processing per packet

Enhancing Performance

TCP/IP
Stack Modifications

TCP/IP Stack Modifications

e Two types of modifications

— TCP Friendly
e Changes that interoperate with unmodified stacks

— Non-friendly
e Changes that require symmetric changes (ECN, etc.)

e We'll focus here on some TCP-friendly
changes

TCP/IP Stack Modifications

e Delayed Ack Removal
e Minimizing Acks

e Slow-Start

e Scalable TCP (RFC-2581)

Scalable TCP

e Flow Control
-~ Receiver via advertised window
- Sender via congestion window

e Scalable TCP alters functions that manipulate the
congestion window (for large windows)

Typical Algorithm Scalable TCP

ACK Received cwnd = cwnd +

cwand = cwad +0.01
cwnd

Congestion cwad

Detection cwnd = cwid = cwid —(0.125% cwnd)

Scalable TCP (cont)

e Recovery at 10Gbps e Recovery at 10Gbps

- ~5 hours - 2.7 seconds
) Rate § € Rat = _lOG(0.575)
i/ L7 e & (e e B}
{pkts/RTT) ; (pkits/RTT) 1 log(1+0.01)
c ' '
'y
E 08750
z QEFFC [el b A A R
) P
2
Time (RTT) Time (RTT)

e http://www-Ice.eng.cam.ac.uk/~ctk21/scalable/

Enhancing Performance

Specialized Hardware

Specialized Hardware

e TCP Offload Engines (TOE)
— Partial Offload NIC
— Full Offload NIC
— Protocol Acceleration

e TOE Chips

e Encryption/Decryption Chips
- IPSec

Enhancing Performance

Other Methods

Other Methods

e Stream Control Transmission Protocol (SCTP)
- RFC-2960

— Associations

— Multi-noming

— Framing

- Unordered Delivery

e Real-Time Transport Protocol (RTP)
- RFC-1889
- UDP-based
— RTP Control Protocol (RTCP)
- QoS handled separately (using protocols such as RSVP)

Other Methods

e Remote DMA Protocol (RDMA) + DDP

- Eliminates copies between kernel and application
— Explicit buffer definition
— Good use of resources

-~ Can be used by TCP, SCTP, others

— Not yet a ratified IETF spec

Future

e Socket Instrumentation (network-aware applications)

— getsockopt()
o RTT
e Utilized Bandwidth

— Socket Buffer Tuning

e Automatic configuration (network-aware operating
systems)
- Tune individual socket performance

— Tune stack performance
e Number of connections, available resources, available BW

e Better tools (monitoring and analysis)

Enhancing Performance

e Final Questions

